The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion

نویسندگان

  • Michael J. Haykinson
  • Lianna M. Johnson
  • Joyce Soong
  • Reid C. Johnson
چکیده

BACKGROUND Hin is a member of an extended family of site-specific recombinases--the DNA invertase/resolvase family--that catalyze inversion or deletion of DNA. DNA inversion by Hin occurs between two recombination sites and requires the regulatory protein Fis, which associates with a cis-acting recombinational enhancer sequence. Hin recombinase dimers bind to the two recombination sites and assemble onto the Fis-bound enhancer to generate an invertasome structure, at which time they become competent to catalyze DNA cleavage and strand exchange. In this report, we investigate the role of the Hin dimer interface in the activation of its catalytic functions. RESULTS We show that the Hin dimer is formed at an interface that contains putative amphipathic alpha-helices in a manner that is very similar to gamma delta resolvase. Certain detergents weakened cooperative interactions between the subunits of the Hin dimer and dramatically increased the rate of the first chemical step of the reaction--double-strand cleavage events at the center of the recombination sites. Amino-acid substitutions within the dimer interface led to profound changes in the catalytic properties of the recombinase. Nearly all mutations strongly affected the ability of the dimer to cleave DNA and most abolished DNA strand exchange in vitro. Some amino-acid substitutions altered the concerted nature of the DNA cleavage events within both recombination sites, and two mutations resulted in cleavage activity that was independent of Fis activation in vitro. Disulfide-linked Hin dimers were catalytically inactive; however, subsequent to the addition of the Fis-bound enhancer sequence, catalytic activity was no longer affected by the presence of oxidizing agents. CONCLUSIONS The combined results demonstrate that the Hin dimer interface is of critical importance for the activation of catalysis and imply that interactions with the Fis-bound enhancer may trigger a conformational adjustment within the region that is important for concerted DNA cleavage within both recombination sites, and possibly for the subsequent exchange of DNA strands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling tetramer formation, subunit rotation and DNA ligation during Hin-catalyzed DNA inversion

Two critical steps controlling serine recombinase activity are the remodeling of dimers into the chemically active synaptic tetramer and the regulation of subunit rotation during DNA exchange. We identify a set of hydrophobic residues within the oligomerization helix that controls these steps by the Hin DNA invertase. Phe105 and Met109 insert into hydrophobic pockets within the catalytic domain...

متن کامل

Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion

Serine recombinases are often tightly controlled by elaborate, topologically-defined, nucleoprotein complexes. Hin is a member of the DNA invertase subclass of serine recombinases that are regulated by a remote recombinational enhancer element containing two binding sites for the protein Fis. Two Hin dimers bound to specific recombination sites associate with the Fis-bound enhancer by DNA loopi...

متن کامل

In vivo identification of intermediate stages of the DNA inversion reaction catalyzed by the Salmonella Hin recombinase.

The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has...

متن کامل

Effect of DNA superhelicity and bound proteins on mechanistic aspects of the Hin-mediated and Fis-enhanced inversion.

Using a recently developed inhomogeneous, macroscopic model for long DNA bound to proteins, we examine topological and geometric aspects of DNA/protein structures and dynamics on various stages of the Hin inversion pathway. This biological reaction involves exchange of DNA in a synaptic complex that brings together several DNA sites bound to Hin dimers as well as Fis enhancers. Brownian dynamic...

متن کامل

Location, degree, and direction of DNA bending associated with the Hin recombinational enhancer sequence and Fis-enhancer complex.

The Fis protein of Escherichia coli and Salmonella typhimurium stimulates several site-specific DNA recombination reactions, as well as transcription of a number of genes. Fis binds to a 15-bp core recognition sequence and induces DNA bending. Mutations in Fis which alter its ability to bend DNA have been shown to reduce the stimulatory activity of Fis in both site-specific recombination and tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1996